Williams tube

The Williams tube or the Williams-Kilburn tube (after inventors Freddie Williams and Tom Kilburn), developed in about 1946 or 1947, was a cathode ray tube used to electronically store binary data.

It was the first random-access digital storage device,[1] and was used successfully in several early computers.

Contents

Working principle

The Williams tube depends on an effect called secondary emission. When a dot is drawn on a cathode ray tube, the area of the dot becomes slightly positively charged and the area immediately around it becomes slightly negatively charged, creating a charge well. The charge well remains on the surface of the tube for a fraction of a second, allowing the device to act as a computer memory. The lifetime of the charge well depends on the electrical resistance of the inside of the tube.

The dot can be erased by drawing a second dot immediately next to the first one, thus filling the charge well. Most systems did this by drawing a short dash starting at the dot position, so that the extension of the dash erased the charge initially stored at the starting point.

The computer reads information from the tube by means of a metal pickup-plate that covers the front of the tube. Each time a dot is created or erased, the change in electrical charge induces a voltage pulse in the pickup-plate. Since the computer knows which location on the screen is being targeted at that instant, it can use the voltage pulse from the plate to read the data stored on the screen.

Reading a memory location creates a new charge well, destroying the original contents of that location, and so any read has to be followed by a write to reinstate the original data. Since the charge gradually leaked away, it was necessary to scan the tube periodically and rewrite every dot (similar to the memory refresh cycles of DRAM in modern systems).

Some Williams tubes were made from radar-type cathode ray tubes with a phosphor coating that made the data visible, while other tubes were purpose-built without such a coating. The presence or absence of this coating had no effect on the operation of the tube, and was of no importance to the operators since the face of the tube was covered by the pickup-plate. If a visible output was needed, a second tube with a phosphor coating was used as a display device.

Each Williams tube could store about 512–1024 bits of data.

Development

Developed at the University of Manchester in England, it provided the medium on which the first electronically stored-memory program was stored in the Manchester Small-Scale Experimental Machine (SSEM) computer. In fact, rather than the Williams tube memory being designed for the SSEM, the SSEM was a testbed to demonstrate the reliability of the memory.[2][3] Tom Kilburn wrote a 17-line program to calculate the highest factor of 218. Tradition at university has it that this was the only program Kilburn ever wrote.[4]

The Williams tube tended to become unreliable with age, and most working installations had to be "tuned" by hand. By contrast, mercury delay line memory was slower and also needed hand tuning, but it did not age as badly and enjoyed some success in early digital electronic computing despite its data rate, weight, cost, thermal and toxicity problems. However, the Manchester Mark 1 was successfully commercialised as the Ferranti Mark 1. Some early computers in the USA also used the Williams tube, including the IAS machine (originally designed for Selectron tube memory), the UNIVAC 1103, Whirlwind, IBM 701, IBM 702 and the Standards Western Automatic Computer (SWAC). Williams tubes were also used in the Soviet Strela-1.

Alternatives

Alternatives to the Williams Tube included delay line memory and Selectron tube.

See also

References

Notes
  1. ^ "Early computers at Manchester University", Resurrection (The Computer Conservation Society) 1 (4), Summer 1992, ISSN 0958-7403, http://www.cs.man.ac.uk/CCS/res/res04.htm#g, retrieved 7 July 2010 
  2. ^ Williams, F.C.; Kilburn, T. (Sept. 1948). "Electronic Digital Computers". Nature 162: 487.  Reprinted in The Origins of Digital Computers
  3. ^ Williams, F.C.; Kilburn, T.; Tootill, G.C. (Feb. 1951). "Universal High-Speed Digital Computers: A Small-Scale Experimental Machine". Proc. IEE 98 (61): 13–28. http://www.computer50.org/kgill/mark1/ssem.html. 
  4. ^ Lavington 1998, p. 11
Bibliography
  • Bashe, Charles J. (1986), IBM's Early Computers, MIT Press, pp. 105, ISBN 0-262-02225-7 
  • Lavington, Simon H. (1980), Early British Computers, Manchester University Press, ISBN 0-932376-08-8 
  • Lavington, Simon (1998), A History of Manchester Computers (2nd ed.), Swindon: The British Computer Society, ISBN 090250501 
  • Randell, Brian (1982), The Origins of Digital Computers (3rd ed.), Berlin, Heidelberg, New York: Springer-Verlag, ISBN 0-387-11319-3 

External links